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1 Tracking Scenarios

Tracking Simulation Overview

You can build a complete tracking simulation using the functions and objects supplied in
this toolbox. The workflow for sensor fusion and tracking simulation consists of three (and
optionally four) components. These components are

1

Use the tracking scenario generator to create ground truth for all moving and
stationary radar platforms and all target platforms (planes, ships, cars, drones). The
trackingScenario class models the motion of all platforms in a global coordinate
system called scenario coordinates. These objects can represent ships, ground
vehicles, airframes, or any object that the radar detects. See “Orientation, Position,
and Coordinate Systems” for a discussion of coordinate systems.

Optionally, simulate an inertial navigation system (INS) that provides radar sensor
platform position, velocity, and orientation relative to scenario coordinates.

Create models for each radar sensor with specifications and parameters using the
monostaticRadarSensor, radarSensor, or radarEmitter objects. Using target
platform pose and profile information, generate synthetic radar detections for each
radar-target combination. Methods belonging to trackingScenario retrieve the
pose and profile of any target platform. The trackingScenario generator does not
have knowledge of scenario coordinates. It knows the relative positions of the target
platforms with respect to the body platform of the radar. Therefore, the detector can
only generate detections relative to the radar location and orientation.

If there is an INS attached to a radar platform, then the radar can transform
detections to the scenario coordinate system. The INS allows multiple radars to
report detections in a common coordinate system.

Process radar detections with a multi-object tracker to associate detections to
existing tracks or create tracks. Multi-object tracks include trackerGNN,
trackerTOMHT, trackerJPDA and trackerPHD. If there is no INS, the tracker can
only generate tracks specific to one radar. If an INS is present, the tracker can create
tracks using measurements from all radars.

The flow diagram shows the progression of information in a tracking simulation.
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Creating a Tracking Scenario

1-4

You can define a tracking simulation by using the trackingScenario object. By default,
the object creates an empty scenario. You can then populate the scenario with platforms
by calling the platform method as many times as needed. A platform is an object
(moving or stationary), which can either be a sensor, a target, or any other entity. A
platform can be modeled as a point or a cuboid by specifying the Dimensions property of
Platform. After creating a platform, you can specify the motion of the platform by using
its Trajectory property. To configure a trajectory, you can use waypointTrajectory,
which allows you to specify the 3-D waypoints that the platform follows and the
associated arrival time for each waypoint. Alternately, you can use
kinematicTrajectory, which allows you to specify the 3-D acceleration and angular
velocity of the platform with initial pose and translational velocity. You can also specify
the orientation of a platform using the Orientation property of
kinematicTrajectory or waypointTrajectory.

Run the simulation by calling the advance method on the trackingScenario object in
a loop, or by calling the record method to run the simulation all at once. You can set the
simulation update interval using the UpdateRate property in the trackingScenario
object. You can set the properties of a platform or leave them to their default value. You
can set them all except for PlatformID. The complete list of Platform properties is
shown here.
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Platform Properties

PlatformID

Scenario-defined platform ID.

ClassID

User-specified platform classification ID.

Dimensions

3-D dimensions of a cuboid that
approximates the size of a platform and
offset of the origin of the platform body
frame from the center of the cuboid. The
default value of Dimensions has all fields
equal to zero, which corresponds to a point
model.

Trajectory

Platform motion, specified by
kinematicTrajecotry or
waypointTrajectory.

Signatures

Platform signatures, specified as a cell
array of irSignature, rcsSignature,
and tsSignature objects. A signature
represents the reflection or emission
pattern of a platform.

PoseEstimator

A pose estimator, specified as a pose-
estimator object such as insSensor
(default).

Emitter

Emitters mounted on platform, specified as
a cell array of emitter objects, such as
radarEmitter or sonarEmitter.

Sensors

Sensors mounted on platform, specified as
a cell array of sensor objects such as
irSensor or sonarSensor.

At any time during the simulation, you can retrieve the current values of platform
properties using the platformPoses and platformProfiles methods of the
trackingScenario object. Both the platformPoses and platformProfiles methods
return properties of all platforms with respect to the scenario's NED frame. You can also
use the pose method of the Platform to return the properties of one specific platform.
In addition, the Platform.targetPoses method, while similar, returns properties of
other platforms with respect to a specified platform.
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Create Tracking Scenario with Two Platforms

1-6

Construct a tracking scenario with two platforms following different trajectories.
sc = trackingScenario('UpdateRate',100.0, 'StopTime',1.2);
Create two platforms.

platfml
platfm2

platform(sc);
platform(sc);

Platform 1 follows a circular path of radius 10 m for one second. This is accomplished by
placing waypoints in a circular shape, ensuring that the first and last waypoint are the
same.

=[010 0; 10 0 0; 0 -10 0; -10 06 0; 0 10 0];
= [0; 0.25; .5; .75; 1.01;
platfml.Trajectory = waypointTrajectory(wptsl, timel);

Platform 2 follows a straight path for one second.

wpts2 [-8 -8 0; 10 10 0O];
time2 = [0; 1.0];
platfm2.Trajectory = waypointTrajectory(wpts2,time2);

Verify the number of platforms in the scenario.
disp(sc.Platforms)

[1x1 fusion.scenario.Platform] [1x1 fusion.scenario.Platform]

Run the simulation and plot the current position of each platform. Use an animated line to
plot the position of each platform

figure

grid

axis equal

axis([-12 12 -12 12])

linel = animatedline('DisplayName', 'Trajectory 1','Color','b', 'Marker"',"'.");
line2 = animatedline('DisplayName', 'Trajectory 2','Color','r', 'Marker"',"."
title('Trajectories')

pl = pose(platfml);

p2 = pose(platfm2);

addpoints(linel,pl.Position(1l),pl.Position(2));
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addpoints(line2,p2.Position(2),p2.Position(2));

while advance
pl = pose
p2 = pose
addpoints
addpoints
pause(0.1

sc)

platfml);

platfm2);
linel,pl.Position(1l),pl.Position(2));
line2,p2.Position(2),p2.Position(2));

~— o~ o~ o~ —~ —~

end

Trajectories
1077
5 -
D -
AT
10+
-10 5 0 5 10

Plot the waypoints for both platforms.

hold on
plot(wptsl(:,1),wptsl(:,2),"' ob")
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text(wptsl(:,1),wptsl(:,2),"t = " + string(timel), 'HorizontalAlignment','left"', 'Vertic:
plot(wpts2(:,1),wpts2(:,2),"' or'")

text(wpts2(:,1),wpts2(:,2),"t = " + string(time2), 'HorizontalAlignment','left"', 'Vertic:
hold off

Trajectories

107
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Radar Detections

The radar detectors monostaticRadarSensor and radarSensor generate
measurements from target poses.



2 Radar Detections

Simulate Radar Detections

2-2

The monostaticRadarSensor object simulates the detection of targets by a scanning
radar. You can use the object to model many properties of real radar sensors. For
example, you can

* simulate real detections with added random noise

* generate false alarms

* simulate mechanically scanned antennas and electronically scanned phased arrays
* specify angular, range, and range-rate resolution and limits

The radar sensor is assumed to be mounted on a platform and carried by the platform as
it maneuvers. A platform can carry multiple sensors. When you create a sensor, you
specify sensor positions and orientations with respect to the body coordinate system of a
platform. Each call to monostaticRadarSensor creates a sensor. The output of
monostaticRadarSensor generates the detection that can be used as input to multi-
object trackers, such as trackerGNN, or any tracking filters, such as trackingKF.

The radar platform does not maintain any information about the radar sensors that are
mounted on it. (The sensor itself contains its position and orientation with respect to the
platform on which it is mounted but not which platform). You must create the association
between radar sensors and platforms. A way to do this association is to put the platform
and its associated sensors into a cell array. When you call a particular sensor, pass in the
platform-centric target pose and target profile information. The sensor converts this
information to sensor-centric poses. Target poses are outputs of trackingScenario
methods.

Create Radar Sensor

You can create a radar sensor using the monostaticRadarSensor object. Set the radar
properties using name-value pairs and then execute the simulator. For example,

radarl = monostaticRadarSensor(

'"UpdateRate',updaterate, % Hz
'ReferenceRange', 111.0e3, % m
'ReferenceRCS', 0.0, % dBsm
'HasMechanicalScan', true,
'MaxMechanicalScanRate',scanrate, % deg/s
'HasElectronicScan', false,

'Field0fView', fov, % [az;el] deg
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'HasElevation', false,

'HasRangeRate', false,

"AzimuthResolution',1.4, ... % deg

'RangeResolution', 135.0) % m
dets = radarl(targets,simtime);

Convenience Syntaxes

There are several syntaxes of monostaticRadarSensor that make it easier to specify
the properties of commonly implemented radar scan modes. These syntaxes set
combinations of these properties: ScanMode, Field0fView, MaxMechanicalScanRate,
MechanicalScanLimits, and ElectronicScanLimits.

* sensor = monostaticRadarSensor('Rotator') createsa
monostaticRadarSensor object that mechanically scans 360° in azimuth. Setting
HasElevation to true points the radar antenna towards the center of the elevation
field of view.

* sensor = monostaticRadarSensor('Sector') creates a
monostaticRadarSensor object that mechanically scans a 90° azimuth sector.
Setting HasElevation to true, points the radar antenna towards the center of the
elevation field of view. You can change the ScanMode to 'Electronic' to
electronically scan the same azimuth sector. In this case, the antenna is not
mechanically tilted in an electronic sector scan. Instead, beams are stacked
electronically to process the entire elevation spanned by the scan limits in a single
dwell.

* sensor = monostaticRadarSensor('Raster') returnsa
monostaticRadarSensor object that mechanically scans a raster pattern spanning
90° in azimuth and 10° in elevation upwards from the horizon. You can change the
ScanMode property to 'Electronic' to perform an electronic raster scan in the
same volume.

* sensor = monostaticRadarSensor('No scanning') returns a
monostaticRadarSensor object that stares along the radar antenna boresight
direction. No mechanical or electronic scanning is performed.

You can set other radar properties when you use these syntaxes. For example,
sensor = monostaticRadarSensor('Raster', 'ScanMode', 'Electronic')
Radar Sensor Parameters

The properties specific to the monostaticRadarSensor object are listed here. For more
detailed information, type
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help monostaticRadarSensor

at the command line.

Sensor location parameters.
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Sensor Location

SensorIndex

A unique identifier for each sensor.

UpdateRate

Rate at which sensor updates are
generated, specified as a positive scalar.
The reciprocal of this property must be an
integer multiple of the simulation time
interval. Updates requested between sensor
update intervals do not return detections.

MountinglLocation

Sensor (x,y,z) defining the offset of the
sensor origin from the origin of its platform.
The default value positions the sensor
origin at the platform origin.

Yaw

Angle specifying the rotation around the
platform z-axis to align the platform
coordinate system with the sensor
coordinate system. Positive yaw angles
correspond to a clockwise rotation when
looking along the positive direction of the z-
axis of the platform coordinate system.
Rotations are applied using the ZYX
convention.

Pitch

Angle specifying the rotation around the
platform y-axis to align the platform
coordinate system with the sensor
coordinate system. Positive pitch angles
correspond to a clockwise rotation when
looking along the positive direction of the y-
axis of the platform coordinate system.
Rotations are applied using the ZYX
convention.

2-5
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Roll

Angle specifying the rotation around the
platform x-axis to align the platform
coordinate system with the sensor
coordinate system. Positive pitch angles
correspond to a clockwise rotation when
looking along the positive direction of the x-
axis of the platform coordinate system.
Rotations are applied using the ZYX
convention.

DetectionCoordinates

Specifies the coordinate system for
detections reported in the “Detections” on
page 2-20 output struct. The coordinate
system can be one of:

e 'Scenario' -- detections are reported
in the scenario coordinate frame in
rectangular coordinates. This option can
only be selected when the sensor
HasINS property is set to true.

* 'Body' -- detections are reported in the
body frame of the sensor platform in
rectangular coordinates.

e 'Sensor rectangular' -- detections
are reported in the radar sensor
coordinate frame in rectangular
coordinates aligned with the sensor
frame axes.

e 'Sensor spherical' -- detections are
reported in the radar sensor coordinate
frame in spherical coordinates based on
the sensor frame axes.

Sensitivity parameters.
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Sensitivity Parameters

DetectionProbability

Probability of detecting a target with radar
cross section, ReferenceRC(S, at the range
of ReferenceRange.

FalseAlarmRate

The probability of a false detection within
each resolution cell of the radar. Resolution
cells are determined from the
AzimuthResolution and
RangeResolution properties and when
enabled the ElevationResolution and
RangeRateResolution properties.

ReferenceRange

Range at which a target with radar cross
section, ReferenceRCS, is detected with
the probability specified in
DetectionProbability.

ReferenceRCS

The target radar cross section (RCS) in dB
at which the target is detected at the range
specified by ReferenceRange with a
detection probability specified by
DetectionProbability.

Sensor resolution and bias parameters.

2-7
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Resolution Parameters

AzimuthResolution

The radar azimuthal resolution defines the
minimum separation in azimuth angle at
which the radar can distinguish two
targets.

ElevationResolution

The radar elevation resolution defines the
minimum separation in elevation angle at
which the radar can distinguish two
targets. This property only applies when the
HasElevation property is set to true.

RangeResolution

The radar range resolution defines the
minimum separation in range at which the
radar can distinguish two targets.

RangeRateResolution

The radar range rate resolution defines the
minimum separation in range rate at which
the radar can distinguish two targets. This
property only applies when the
HasRangeRate property is set to true.

AzimuthBiasFraction

This property defines the azimuthal bias
component of the radar as a fraction of the
radar azimuthal resolution specified by the
AzimuthResolution property. This
property sets a lower bound on the
azimuthal accuracy of the radar.

ElevationBiasFraction

This property defines the elevation bias
component of the radar as a fraction of the
radar elevation resolution specified by the
ElevationResolution property. This
property sets a lower bound on the
elevation accuracy of the radar. This
property only applies when the
HasElevation property is set to true.

2-8
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RangeBiasFraction

This property defines the range bias
component of the radar as a fraction of the
radar range resolution specified by the
RangeResolution property. This property
sets a lower bound on the range accuracy
of the radar.

RangeRateBiasFraction

This property defines the range rate bias
component of the radar as a fraction of the
radar range resolution specified by the
RangeRateResolution property. This
property sets a lower bound on the range
rate accuracy of the radar. This property
only applies when you set the
HasRangeRate property to true.

Enabling parameters.
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Enabling Parameters

HasElevation This property allows the radar sensor to
scan in elevation and estimate elevation
from target detections.

HasRangeRate This property allows the radar sensor to
estimate range rate.

HasFalseAlarms This property allows the radar sensor to
generate false alarm detection reports.

HasRangeAmbiguities When true, the radar does not resolve

range ambiguities. When a radar sensor
cannot resolve range ambiguities, targets
at ranges beyond the
MaxUnambiguousRange property value are
wrapped into the interval [0
MaxUnambiguousRange]. When false,
targets are reported at their unwrapped
range.

HasRangeRateAmbiguites

When true, the radar does not resolve
range rate ambiguities. When a radar
sensor cannot resolve range rate
ambiguities, targets at range rates above
the MaxUnambiguousRadialSpeed
property value are wrapped into the
interval [0
MaxUnambiguousRadialSpeed]. When
false, targets are reported at their
unwrapped range rates. This property only
applies when the HasRangeRate property
is set to true.
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HasNoise

Specifies if noise is added to the sensor
measurements. Set this property to true to
report measurements with noise. Set this
property to false to report measurements
without noise. The reported measurement
noise covariance matrix contained in the
output objectDetection struct is always
computed regardless of the setting of this
property.

HasOcclusion

Enable occlusion from extended objects,
specified as true or false. Set this
property to true to model occlusion from
extended objects. Note that both extended
objects and point targets can be occluded
by extended objects, but a point target
cannot occlude another point target or an
extended object. Set this property to false
to disable occlusion of extended objects.

HasINS

Set this property to true to enable an
optional input argument to pass the current
estimate of the sensor platform pose to the
sensor. This pose information is added to
the MeasurementParameters field of the
reported detections. Then, the tracking and
fusion algorithms can estimate the state of
the target detections in scenario
coordinates.

Scan parameters.
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Scan Parameters

ScanMode

This property specifies the scan mode used
by the radar as one of:

‘No scanning' -- the radar does not
scan. The radar beam points along the
antenna boresight.

'Mechanical'-- the radar
mechanically scans between the azimuth
and elevation limits specified by the
MechanicalScanLimits property.

"Electronic'-- the radar
electronically scans between the
azimuth and elevation limits specified by
the ElectronicScanLimits property.

'Mechanical and electronic' --
the radar mechanically scans the
antenna boresight between the
mechanical scan limits and
electronically scans beams relative to
the antenna boresight between the
electronic scan limits. The total field of
regard scanned in this mode is the
combination of the mechanical and
electronic scan limits.

In all scan modes except 'No scanning’,
the scan proceeds at angular intervals
specified by the radar field of view specified
in FieldOfView.
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MaxMechanicalScanRate

This property sets the magnitude of the
maximum mechanical scan rate of the
radar. When HasElevation is true, the
scan rate is a vector consisting of separate
azimuthal and elevation scan rates. When
HasElevation is false, the scan rate is a
scalar representing the azimuthal scan
rate. The radar sets its scan rate to step the
radar mechanical angle by the radar field of
regard. When the required scan rate
exceeds the maximum scan rate, the
maximum scan rate is used.

MechanicalScanLimits

This property specifies the mechanical scan
limits of the radar with respect to its
mounted orientation. When HasElevation
is true, the limits are specified by
minimum and maximum azimuth and by
minimum and maximum elevation. When
HasElevation is false, limits are
specified by minimum and maximum
azimuth. Azimuthal scan limits cannot span
more than 360 degrees and elevation scan
limits must lie in the closed interval [ -90
901].

ElectronicScanLimits

This property specifies the electronic scan
limits of the radar with respect to the
current mechanical angle. When
HasElevation is true, the limits are
specified by minimum and maximum
azimuth and by minimum and maximum
elevation. When HasElevation is false,
limits are specified by minimum and
maximum azimuth. Both azimuthal and
elevation scan limits must lie in the closed
interval [-90 90].

2-13
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FieldOfView This property specifies the sensor azimuthal
and elevation fields of view. The field of
view defines the total angular extent
observed by the sensor during a sensor
update. The field of view must lie in the
interval (0,180]. Targets outside of the
sensor angular field of view during a sensor
update are not detected.

Range and range rate parameters.

2-14
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Range and Range Rate Parameters

MaxUnambiguousRange

This property specifies the range at which
the radar can unambiguously resolve the
range of a target. Targets detected at
ranges beyond the unambiguous range are
wrapped into the range interval [0
MaxUnambiguousRange]. This property
only applies to true target detections when
you set HasRangeAmbiguities property
to true.

This property also defines the maximum
range at which false alarms are generated.
This property only applies to false target
detections when you set HasFalseAlarms
property to true.

MaxUnambiguousRadialSpeed

This property specifies the maximum
magnitude value of the radial speed at
which the radar can unambiguously resolve
the range rate of a target. Targets detected
at range rates whose magnitude is greater
than the maximum unambiguous radial
speed are wrapped into the range rate
interval [ -MaxUnambiguousRadialSpeed
MaxUnambiguousRadialSpeed]. This
property only applies to true target
detections when you set both the
HasRangeRate and
HasRangeRateAmbiguities properties to
true.

This property also defines the range rate
interval over which false target detections
are generated. This property only applies to
false target detections when you set both
the HasFalseAlarms and HasRangeRate
properties to true.

2-15
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Detector Input

Each sensor created by monostaticRadarSensor accepts as input an array of target
structures. This structure serves as the interface between the trackingScenario and
the sensors. You create the target struct from target poses and profile information
produced by trackingScenario or equivalent software.

The structure contains these fields.

Field Description

PlatformID Unique identifier for the platform, specified
as a scalar positive integer. This is a
required field with no default value.

ClassID User-defined integer used to classify the
type of target, specified as a nonnegative
integer. Zero is reserved for unclassified
platform types and is the default value.

Position Position of target in platform coordinates,
specified as a real-valued, 1-by-3 vector.
This is a required field with no default
value. Units are in meters.

Velocity Velocity of target in platform coordinates,
specified as a real-valued, 1-by-3 vector.
Units are in meters per second. The default
is[0 0 0].

Acceleration Acceleration of target in platform
coordinates specified as a 1-by-3 row
vector. Units are in meters per second-
squared. The defaultis [0 0 O].

Orientation Orientation of the target with respect to
platform coordinates, specified as a scalar
quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from
the platform coordinate system to the
current target body coordinate system.
Units are dimensionless. The default is
quaternion(1,0,0,0).
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Field Description

AngularVelocity Angular velocity of target in platform
coordinates, specified as a real-valued, 1-
by-3 vector. The magnitude of the vector
defines the angular speed. The direction
defines the axis of clockwise rotation. Units
are in degrees per second. The default is [0
0 0].

You can create a target pose structure by merging information from the platform
information output from the targetProfiles method of trackingScenario and target
pose information output from the targetPoses method on the platform carrying the
sensors. You can merge them by extracting for each PlatformID in the target poses
array, the profile information in platform profiles array for the same PlatformID.

The platform targetPoses method returns this structure for each target other than the
platform.

Target Poses

platformID
ClassID
Position

Velocity

Yaw

Pitch

Roll
AngularVelocity

The platformProfiles method returns this structure for all platforms in the scenario.
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Platform Profiles

PlatformID

ClassID

RCSPattern

RCSAzimuthAngles

RCSElevationAngles

Radar Sensor Coordinate Systems

Detections consist of measurements of positions and velocities of targets and their
covariance matrices. Detections are constructed with respect to sensor coordinates but
can be output in one of several coordinates. Multiple coordinate frames are used to
represent the positions and orientations of the various platforms and sensors in a

scenario.

In a radar simulation, there is always a top-level global coordinate system which is usually
the North-East-Down (NED) Cartesian coordinate system defined by a tangent plane at
any point on the surface of the Earth. The trackingScenario object models the motion
of platforms in the global coordinate system. When you create a platform, you specify its
location and orientation relative to the global frame. These quantities define the body
axes of the platform. Each radar sensor is mounted on the body of a platform. When you
create a sensor, you specify its location and orientation with respect to the platform body
coordinates. These quantities define the sensor axes. The body and radar axes can change
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over time, however, global axes do not change.

-----
.............

Body Frame

NED Frame

D

Additional coordinate frames can be required. For example, often tracks are not
maintained in NED (or ENU) coordinates, as this coordinate frame changes based on the
latitude and longitude where it is defined. For scenarios that cover large areas (over 100
kilometers in each dimension), earth-centered earth-fixed (ECEF) can be a more
appropriate global frame to use.
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A radar sensor generates measurements in spherical coordinates relative to its sensor
frame. However, the locations of the objects in the radar scenario are maintained in a top-
level frame. A radar sensor is mounted on a platform and will, by default, only be aware of
its position and orientation relative to the platform on which it is mounted. In other
words, the radar expects all target objects to be reported relative to the platform body
axes. The radar reports the required transformations (position and orientation) to relate
the reported detections to the platform body axes. These transformations are used by
consumers of the radar detections (e.g. trackers) to maintain tracks in the platform body
axes. Maintaining tracks in the platform body axes enables the fusion of measurement or
track information across multiple sensors mounted on the same platform.

If the platform is equipped with an inertial navigation system (INS) sensor, then the
location and orientation of the platform relative to the top-level frame can be determined.
This INS information can be used by the radar to reference all detections to scenario
coordinates.

INS

When you specify HasINS as true, you must pass in an INS struct into the step
method. This structure consists of the position, velocity, and orientation of the platform in
scenario coordinates. These parameters let you express target poses in scenario
coordinates by setting the DetectionCoordinates property.

Detections

Radar sensor detections are returned as a cell array of objectDetection objects. A
detection contains these properties.
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objectDetection Structure

Field Definition
Time Measurement time
Measurement Measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification

MeasurementParameters

Parameters used by initialization functions
of any nonlinear Kalman tracking filters

ObjectAttributes

Additional information passed to tracker

Measurement and MeasurementNoise are reported in the coordinate system specified
by the DetectionCoordinates property of the monostaticRadarSensor are reported

in sensor Cartesian coordinates.
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Measurement Coordinates

DetectionCoordinates Measurement and Measurement Noise
Coordinates

'Scenario’ Coordinate Dependence on

'Body HasRangeRate

'Sensor rectangular'’ HasRangeRate Coordinates
true [x;y;z;vXx;vy;vz]
false [x;y;z]

'Sensor spherical' Coordinate Dependence on

HasRangeRate and HasElevation

HasRangeRa [HasElevati |[Coordinate

te on s

true true [az;el;rng
yrr]

true false [az;rng;rr
]

false true [az;el;rng
]

false false [az; rng]

The MeasurementParameters field consists of an array of structs describing a
sequence of coordinate transformations from a child frame to a parent frame or the
inverse transformations (see “Frame Rotation”). The longest possible sequence of
transformations is: Sensor — Platform — Scenario. For example, if the detections are
reported in sensor spherical coordinates and HasINS is set to false, then the sequence
consists of one transformation from sensor to platform. If HasINS is true, the sequence of
transformations consists of two transformations - first to platform coordinates then to
scenario coordinates. Trivially, if the detections are reported in platform rectangular
coordinates and HasINS is set to false, the transformation consists only of the identity.

Each struct takes the form:
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MeasurementParameters

Parameter

Definition

Frame

Enumerated type indicating the frame used
to report measurements. When detections
are reported using a rectangular coordinate
system, Frame is set to 'rectangular"'.
When detections are reported in spherical
coordinates, Frame is set 'spherical' for
the first struct.

OriginPosition

Position offset of the origin of frame(k) from
the origin of frame(k+1) represented as a
3-by-1 vector.

OriginVelocity

Velocity offset of the origin of frame(k) from
the origin of frame(k+1) represented as a
3-by-1 vector.

Orientation

A 3-by-3 real-valued orthonormal frame
rotation matrix which rotates the axes of
frame(k+1) into alignment with the axes of
frame(k).

IsParentToChild

A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate
frame. If false, Orientation performs a
frame rotation from the child's coordinate
frame to the parent's coordinate frame.

HasElevation

A logical scalar indicating if the frame has
three-dimensional position. Only set to false
for the first struct when detections are
reported in spherical coordinates and
HasElevation is false, otherwise it is
true.

HasVelocity

A logical scalar indicating if the reported
detections include velocity measurements.
true when HasRangeRate is enabled,
otherwise false.
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ObjectAttributes

Attribute Definition

TargetIndex Identifier of the platform, PlatformID,
that generated the detection. For false
alarms, this value is negative.

SNR

Detection signal-to-noise ratio in dB.
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» “Tracking and Tracking Filters” on page 3-2

* “Multiple Extended Object Tracking” on page 3-11
* “Linear Kalman Filters” on page 3-13

+ “Extended Kalman Filters” on page 3-20

Tracking is the process of estimating the state of motion of an object based on
measurements taken off the object. For an object moving in space, the state usually
consists of position, velocity, and any other state parameters of objects at any given time.
A state is the necessary information needed to predict future states of the system given
the specified equations of motion. The estimates are derived from observations on the
objects and are updated as new observations are taken. Observations are made using one
or more sensors. Observations can only be used to update a track if it is likely that the
observation is that of the object having that track. Observations need to be either
associated with an existing track or used to create a new track. When several tracks are
present, there are several ways observations are associated with one and only one track.
The chosen track is based on the "closest" track to the observation.
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Tracking and Tracking Filters

Multi-Object Tracking

You can use multi-sensor, multi-target trackers, trackerGNN, trackerJPDA, and
trackerTOMHT, to track multiple targets. These trackers implement the multi-object
tracking problem using the measurement-to-track association approach. Tracks are
initiated and updated using sensor detections of targets. Trackers take several steps
when new detections are made:

» The tracker tries to assign a detection to an existing track.

* The tracker creates a track for each detection it cannot assign. When starting the
tracker, all detections are used to create tracks.

» The tracker evaluates the status of each track. For new tracks, the status is tentative
until enough detections are made to confirm the track. For existing tracks, newly
assigned detections are used by the tracking filter to update the track state. When a
track has no new added detections, the track is coasted (predicted) until new
detections are assigned to it. If no new detections are added after a specified number
of updates, the track is deleted.

When tracking multiple objects using these trackers, there are several things to consider:
* Decide which tracker to use.

* trackerGNN uses a global nearest-neighbor assignment algorithm, which
maintains a single hypothesis about the tracked object. The tracker offers low
computation cost but is not robust during ambiguous association events.

+ trackerTOMHT assigns detections based on a track-oriented, multi-hypothesis
approach, which maintains multiple hypotheses about the tracked object. The
tracker is robust during ambiguous data association events but is computationally
more expensive.

* tracker]PDA uses a joint probabilistic data association approach, which applies a
soft assignment where multiple detections can contribute to each track. The
tracker balances the robustness and computation cost between trackerGNN and
trackerTOMHT.

See the “Tracking Closely Spaced Targets Under Ambiguity” example for a comparison
between these three trackers.

3-2



Tracking and Tracking Filters

Decide which type of tracking filter to use.

The choice of tracking filter depends on the expected dynamics of the object you want
to track. The toolbox provides multiple Kalman filters including the Linear Kalman
filter, trackingKF, the Extended Kalman filter, t rackingEKF, the Unscented Kalman
filter, trackingUKF, and the Cubature Kalman filter, t rackingCKF. The linear
Kalman filter is used when the dynamics of the object follow a linear model and the
measurements are linear functions of the state vector. The extended, unscented, and
cubature Kalman filters are used when the dynamics are nonlinear, the measurement
model is nonlinear, or both. The toolbox also provides non-Gaussian filters such as the
particle filter, trackingPF, Gaussian-sum filter, trackingGSF, and the Interacting
Multiple Model (IMM) filter, trackingIMM. See the “Tracking with Range-Only
Measurements” and “Tracking Maneuvering Targets” examples for more information
about these filters.

You can set the type of filter by specifying the FilterInitializationFcn property
of a tracker. For example, if you set the FilterInitializationFcn property to
@initcaekf, then the tracker uses the initcaekf function to create a constant-
acceleration extended Kalman filter for a new track generated from detections.

Decide which track logic to use.

You can specify the conditions under which a track is confirmed or deleted by setting
the TrackLogic property. Three algorithms are supported:

* 'History' — Track confirmation and deletion are based on the number of times
the track has been assigned to a detection in the last several tracker updates. You
can use this logic with trackerGNN and trackerJPDA.

* 'Score' — Track confirmation and deletion are based on a log-likelihood
computation. A high score means that the track is more likely to be valid. A low
score means that the track is more likely to be false. You can use this logic with
trackerGNN and trackerTOMHT.

+ 'Integrated' — Track confirmation and deletion are based on the probability of
track existence. You can use this logic with trackerJPDA.

For more details, see the “Introduction to Track Logic” example.

You can also use a multi-sensor, multi-target tracker, trackerPHD, to track multiple
targets simultaneously. trackerPHD approaches the multi-object tracking problem using
the random finite set (RFS) method and tracks the probability hypothesis density (PHD) of
a scenario. trackerPHD extracts peaks from the PHD-intensity to represent potential
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targets and maintain identities of targets by assigning a label to each component. The
toolbox offers one realization of PHD, ggiwphd, which represents the PHD of extended
targets using a Gamma Gaussian Inverse-Wishart (GGIW) target-state model. You can
represent the configurations of sensors for trackerPHD using
trackingSensorConfiguration.

Multi-Object Tracker Properties
trackerGNN Properties

The trackerGNN object is a multi-sensor, multi-object tracker that uses global nearest
neighbor association. Each detection can be assigned to only one track (single-hypothesis
tracker) which can also be a new track that the detection initiates. At each step of the
simulation, the tracker updates the track state. You can specify the behavior of the
tracker by setting the following properties.



Tracking and Tracking Filters

trackerGNN Properties

FilterInitializationFcn

A handle to a function that initializes a
tracking filter based on a single detection.
This function is called when a detection
cannot be assigned to an existing track. For
example, initcaekf creates an extended
Kalman filter for an accelerating target. All
tracks are initialized with the same type of
filter.

Assignment

The name of the assignment algorithm. The
tracker provides three built-in algorithms:
'"Munkres', 'Jonker-Volgenant', and
"Auction' algorithms. You can also create
your own custom assignment algorithm by
specifying 'Custom'.

CustomAssignmentFcn

The name of the custom assignment
algorithm function. This property is
available on when the Assignment
property is set to 'Custom'.

AssignmentThreshold

Specify the threshold that controls the
assignment of a detection to a track.
Detections can only be assigned to a track
if their normalized distance from the track
is less than the assignment threshold. Each
tracking filter has a different method of
computing the normalized distance.
Increase the threshold if there are
detections that can be assigned to tracks
but are not. Decrease the threshold if there
are detections that are erroneously
assigned to tracks.
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TrackLogic

Specify the track confirmation logic
--'History' or 'Score’. For descriptions
of these options, type

help trackHistorylLogic
or
help trackScorelLogic

at the command line.

ConfirmationThreshold

Specify the threshold for track
confirmation. The threshold depends on the
setting for TrackLogic

* 'History' -- specify the confirmation
threshold as [M N]. If the track is
detected at least M times in the last N
updates, the track is confirmed.

* 'Score' --- specify the confirmation
threshold as a single number. If the
score is greater than or equal to the
threshold, this track is confirmed.
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DeletionThreshold

Specify the threshold for track deletion.
The threshold depends on the setting of
TrackLogic

* 'History' -- specify the deletion
threshold as a pair of integers [P R]. A
track is deleted if it is not assigned to a
track at least P times in the last R
updates.

* 'Score' --- specify the deletion
threshold as a single number. The track
is deleted if its score decreases by at
least this threshold from its maximum
track score.

DetectionProbability

Specify the probability of detection as a
number in the range (0,1). The probability
of detection is used to calculate the track
score when initializing and updating a
track. This property is used only when
TrackLogic is setto 'Score’.

FalseAlarmRate

Specify the rate of false detection as a
number in the range (0,1). The false alarm
rate is used to calculate the track score
when initializing and updating a track. This
property is used only when TrackLogic is
set to 'Score’.

Beta

Specify the rate of new tracks per unit
volume as a positive number. This property
is used only when TrackLogic is set to
'Score'. The rate of new tracks is used in
calculating the track score during track
initialization. This property is used only
when TrackLogic is set to 'Score"'.
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Volume Specify the volume of the sensor
measurement bin as a positive scalar. For
example, a radar sensor that produces a 4-
D measurement of azimuth, elevation,
range, and range-rate creates a 4-D volume.
The volume is a product of the radar
angular beamwidth, the range bin width,
and the range-rate bin width. The volume is
used in calculating the track score when
initializing and updating a track. This
property is used only when TrackLogic is
set to 'Score’.

MaxNumTracks Specify the maximum number of tracks the
tracker can maintain.

MaxNumSensors Specify the maximum number of sensors
sending detections to the tracker as a
positive integer. This number must be
greater than or equal to the largest
SensorIndex value used in the
objectDetection input to the step
method. This property determines how
many sets of ObjectAttributes each
track can have.

HasDetectableTrackIDsInput Set this property to true if you want to
provide a list of detectable track IDs as
input to the step method. This list contains
all tracks that the sensors expect to detect
and, optionally, the probability of detection
for each track ID.

HasCostMatrixInput Set this property to true if you want to
provide an assignment cost matrix as input
to the step method.

trackerGNN Input
The input to the trackerGNN consists of a list of detections, the update time, cost matrix,

and other data. Detections are specified as a cell array of objectDetection objects (see
“Detections” on page 2-20). The input arguments are listed here.
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trackerGNN Input

tracker A trackerGNN object.

detections Cell array of objectDetection objects
(see “Detections” on page 2-20).

time Time to which all the tracks are to be

updated and predicted. The time at this
execution step must be greater than the
value in the previous call.

costmatrix Cost matrix for assigning detections to
tracks. A real T-by-D matrix, where T is the
number of tracks listed in the allTracks
argument returned from the previous call to
step. D is the number of detections that
are input in the current call. A larger cost
matrix entry means a lower likelihood of
assignment.

detectableTrackIDs IDs of tracks that the sensors expect to
detect, specified as an M-by-1 or M-by-2
matrix. The first column consists of track
IDs, as reported in the TrackID field of the
tracker output. The second column is
optional and allows you to add the
detection probability for each track.

trackerGNN Output

The output of the tracker can consist of up to three struct arrays with track state
information. You can retrieve just the confirmed tracks, the confirmed and tentative
tracks, or these tracks plus a combined list of all tracks.

confirmedTracks = step(...)
[confirmedTracks, tentativeTracks] = step(...)
[confirmedTracks, tentativeTracks, allTracks] = step(...)

The fields contained in the struct are:
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trackerGNN Output struct

TrackID

Unique integer that identifies the track.

UpdateTime

Time to which the track is updated.

Age

Number of updates since track
initialization.

State

State vector at update time.

StateCovariance

State covariance matrix at update time.

IsConfirmed

True if the track is confirmed.

TrackLogic

The track logic used in confirming the track
- '"History' or 'Score'.

TrackLogicState

The current state of the track logic.

* For 'History' track logic, a 1-by-Q
logical array, where Q is the larger of N
specified in the confirmation threshold
property, ConfirmationThreshold,
and R specified in the deletion threshold
property, DeletionThreshold.

* For 'Score' track logic, a 1-by-2
numerical array in the form:
[currentScore, maxScore].

IsCoasted

True if the track has been updated without
a detection. In this case, tracks are
predicted to the current time.

ObjectClassID

An integer value representing the target
classification. Zero is reserved for an
"unknown" class.

ObjectAttributes

A cell array of cells. Each cell captures the
object attributes reported by the
corresponding sensor.
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Multiple Extended Object Tracking

In traditional tracking systems, the point target model is commonly used. In a point target
model:

* Each object is modeled as a point without any spatial extent.
* Each object gives rise to at most one measurement per sensor scan.

Though the point target model simplifies tracking systems, the assumptions above may
not be valid when modern tracking systems are considered:

* In modern tracking systems, the dimensions of the extended object play a significant
role. For example, in autonomous vehicles, target dimensions must be considered
properly to avoid collision with objects around the autonomous system.

* Modern sensors have a high resolution, and an object can occupy more than one
resolution cell. As a result, the sensor may report multiple detections for that object.
In this case, In this case, the point model cannot fully exploit the sensor ability to
detect object extent.

In extended object tracking, a sensor can return multiple detections per scan for an
extended object. The differences between extended object tracking and point object
tracking are more about the sensor properties rather than object properties. For example,
if the resolution of a sensor is high enough, even an object with small dimensions can still
occupy several resolution cells of the sensor.

Sensor Fusion and Tracking Toolbox offers several methods and examples for multiple
extended object tracking. Depending on the assumptions made in the detection and
tracker, these methods can be separated into the following categories:

* One detection per object.

In this category, the conventional trackers (such as trackerGNN, trackerJPDA, and
trackerTOMHT) are used, which assume one detection per object. This category can
further be divided into two methods:

* A point detection per object.

In this method, even though the sensor returns multiple detections per object,
these detections are first converted into one representative point detection with
certain covariance to account for the distribution of these detections. Then the
representative point detection is processed by a conventional tracker, which
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models the object as a point target and tracks its kinematic state. Even though this
method is simple to use, it overlooks the ability of the sensor to detect the object
dimension.

The Point Object Tracker approach shown in the first part of “Extended Object
Tracking” example adopts this method.

* An extended object detection per object.

In this method, the multiple detections of an extended object are converted into a
single parameterized shape detection. The shape detection includes the kinematic
states of the object, as well as its extent parameters such as length, width and
height. Then the shape detection is processed by a conventional tracker, which
models the object as an extended object by tracking both the object kinematic state
and its dimensions.

In the “Track Vehicles Using Lidar: From Point Cloud to Track List” example, the
Lidar detections of each vehicle are converted into a cuboid detection with length,
width, and height. A JPDA tracker is used to track the position, velocity and
dimensions for all the vehicles with these cuboid detections.

Multiple detections per object.

In this category, extended object trackers (such as trackerPHD) are used, which
assume multiple detections per object. The detections are fed directly to the tracker,
and the tracker models the extended object using certain default geometric shapes
with variable sizes.

In the “Extended Object Tracking” example, the GGIW-PHD Extended Object Tracker
approach represents vehicle shapes as ellipses, and the Prototype Extended Object
Tracker approach represents vehicle shapes as rectangles.

In the “Marine Surveillance Using a PHD Tracker” example, the GGIW-PHD tracker
models the ship shapes as ellipses.
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Linear Kalman Filters

In this section...

“State Equations” on page 3-13

“Measurement Models” on page 3-15

“Linear Kalman Filter Equations” on page 3-15
“Filter Loop” on page 3-16

“Constant Velocity Model” on page 3-17
“Constant Acceleration Model” on page 3-18

When you use a Kalman filter to track objects, you use a sequence of detections or
measurements to construct a model of the object motion. Object motion is defined by the
evolution of the state of the object. The Kalman filter is an optimal, recursive algorithm
for estimating the track of an object. The filter is recursive because it updates the current
state using the previous state, using measurements that may have been made in the
interval. A Kalman filter incorporates these new measurements to keep the state estimate
as accurate as possible. The filter is optimal because it minimizes the mean-square error
of the state. You can use the filter to predict future states or estimate the current state or
past state.

State Equations

For most types of objects tracked in Sensor Fusion and Tracking Toolbox, the state vector
consists of one-, two- or three-dimensional positions and velocities.

Start with Newton equations for an object moving in the x-direction at constant
acceleration and convert these equations to space-state form.

mx=f
I
m

X=~2=aq

If you define the state as
X1 =X

X2=)&,

you can write Newton’s law in state-space form.
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X1 01

00

X1 0

d
+
1

dt

a

X2 X2

You use a linear dynamic model when you have confidence that the object follows this
type of motion. Sometimes the model includes process noise to reflect uncertainty in the
motion model. In this case, Newton’s equations have an additional term.

X1 01

00

X1l [0

1

0
1

C
dt

a+

Vk

X2 X2

v, and is the unknown noise perturbations of the acceleration. Only the statistics of the
noise are known. It is assumed to be zero-mean Gaussian white noise.

You can extend this type of equation to more than one dimension. In two dimensions, the
equation has the form

X1 0100]* 0 0
dlx| [0000fx| [ax| [

= + +
dtly;| " looo0 1|y |o] |0
)y) OOOOyZ Gy Vy

The 4-by-4 matrix on the right side is the state transition model matrix. For independent
x- and y- motions, this matrix is block diagonal.

When you transition to discrete time, you integrate the equations of motion over the
length of the time interval. In discrete form, for a sample interval of T, the state-
representation becomes
d
+| la+

0
1

X1,k+1 X1,k

X2,k

v

01 T

[

X2,k +1

The quantity x,,; is the state at discrete time k+1, and Xy is the state at the earlier
discrete time, k. If you include noise, the equation becomes more complicated, because
the integration of noise is not straightforward.

The state equation can be generalized to
Xk +1 = Frxi + Grug + v

F) is the state transition matrix and Gy, is the control matrix. The control matrix takes into
account any known forces acting on the object. Both of these matrices are given. The last
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term represents noise-like random perturbations of the dynamic model. The noise is
assumed to be zero-mean Gaussian white noise.

Continuous-time systems with input noise are described by linear stochastic differential
equations. Discrete-time systems with input noise are described by linear stochastic
differential equations. A state-space representation is a mathematical model of a physical
system where the inputs, outputs, and state variables are related by first-order coupled
equations.

Measurement Models

Measurements are what you observe about your system. Measurements depend on the
state vector but are not always the same as the state vector. For instance, in a radar
system, the measurements can be spherical coordinates such as range, azimuth, and
elevation, while the state vector is the Cartesian position and velocity. For the linear
Kalman filter, the measurements are always linear functions of the state vector, ruling out
spherical coordinates. To use spherical coordinates, use the extended Kalman filter.

The measurement model assumes that the actual measurement at any time is related to
the current state by

2k = Hka + wg

wj, represents measurement noise at the current time step. The measurement noise is also
zero-mean white Gaussian noise with covariance matrix Q described by Qy = E[nyn;T].

Linear Kalman Filter Equations
Without noise, the dynamic equations are

Xk +1 = Frxx + Grug .
Likewise, the measurement model has no measurement noise contribution. At each
instance, the process and measurement noises are not known. Only the noise statistics
are known. The

2k = Hixk

You can put these equations into a recursive loop to estimate how the state evolves and
also how the uncertainties in the state components evolve.
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Filter Loop

Start with a best estimate of the state, x,,, and the state covariance, Py,. The filter
performs these steps in a continual loop.

1

Propagate the state to the next step using the motion equations.
Xk + 1|k = Frxx |k + Grug -
Propagate the covariance matrix as well.
T
Py 411k = FxPrkFk + Qk-

The subscript notation k+1|k indicates that the quantity is the optimum estimate at
the k+1 step propagated from step k. This estimate is often called the a priori
estimate.

Then predict the measurement at the updated time.

Zk+ 11k = Hi+ 12X + 1k

Use the difference between the actual measurement and predicted measurement to
correct the state at the updated time. The correction requires computing the Kalman
gain. To do this, first compute the measurement prediction covariance (innovation)

T
Sk+1=Hrg+1Pk+11kHk +1 + Rk +1

Then the Kalman gain is

T o1
Kk+1="Pr+11kHk + 1Sk +1

and is derived from using an optimality condition.

Correct the predicted estimate with the measurement. Assume that the estimate is a
linear combination of the predicted state and the measurement. The estimate after
correction uses the subscript notation, k+1|k+1. is computed from

Xk+11k+1=Xk+1k T K+ 1@k +1 =2+ 118

where K, ,; is the Kalman gain. The corrected state is often called the a posteriori
estimate of the state because it is derived after the measurement is included.

Correct the state covariance matrix
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Pry1ik+1=Pr+1k — Kk + 1Sk + 1K'k +1

Finally, you can compute a measurement based upon the corrected state. This is not a
correction to the measurement but is a best estimate of what the measurement would
be based upon the best estimate of the state. Comparing this to the actual
measurement gives you an indication of the performance of the filter.

This figure summarizes the Kalman loop operations.

Predict

Initialize e 1 = Pl o Gtie

Top0- Fojo > Py = FiePyc B + Qi

Y

Zeaipe = Her1 Tk

Correct
Sk+1 = His1 Py HY, | + R
Kiy1 = PonHE, S0k,
Thptfkt1 = Thatk + Krar (241 — Zesage) [€
Pesipest = Pepape — K1 Sk K
e T T Hiy 1Tk 11k+1

Constant Velocity Model

The linear Kalman filter contains a built-in linear constant-velocity motion model.
Alternatively, you can specify the transition matrix for linear motion. The state update at
the next time step is a linear function of the state at the present time. In this filter, the
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measurements are also linear functions of the state described by a measurement matrix.
For an object moving in 3-D space, the state is described by position and velocity in the x-,
y-, and z-coordinates. The state transition model for the constant-velocity motion is

Xk +1 1T000O0] X
Vx, k +1 01000 0|k
Yk +1 001TO0O| W
Vy k+1 000100 Vy, k
00001T| z

Vo kot 000001 Vy k

2k +1

The measurement model is a linear function of the state vector. The simplest case is one
where the measurements are the position components of the state.

Xk

Vx, k
Mk [100000]
my,k|={001000

Vv
m,| 000071 0]f*

2

V2, k

Constant Acceleration Model

The linear Kalman filter contains a built-in linear constant-acceleration motion model.
Alternatively, you can specify the transition matrix for constant-acceleration linear
motion. The transition model for linear acceleration is
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Xk +1
Vx k+1
ay, k + 1
Yk +1
Vy k+1
ay,k+1
Zk +1

Vo, k+1

dz, k +1

1T%T2000000
01 T 00 0 00 0
00 1 00 0 00 0
0001T%T2000
00 0 01 T 00 0
00 0 00 1 00 0
00000017‘%2‘2
00 0 00 0 01 T
00 0 00 0 00 1 |

Xk
Vx, k
Qx, k

Yk
Vy, k
a y, k

Zk
Vz, k

az, k

The simplest case is one where the measurements are the position components of the

state.

my k

my

10000000 0] Yk
my, k| ={000100000[vyx
00000010 0[ay,

Xk
Vx, k

Qy, k

2k
V2, k

ay, k
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Extended Kalman Filters

3-20

In this section...

“State Update Model” on page 3-20

“Measurement Model” on page 3-21

“Extended Kalman Filter Loop” on page 3-21

“Predefined Extended Kalman Filter Functions” on page 3-22

Use an extended Kalman filter when object motion follows a nonlinear state equation or
when the measurements are nonlinear functions of the state. A simple example is when
the state or measurements of the object are calculated in spherical coordinates, such as
azimuth, elevation, and range.

State Update Model

The extended Kalman filter formulation linearizes the state equations. The updated state
and covariance matrix remain linear functions of the previous state and covariance
matrix. However, the state transition matrix in the linear Kalman filter is replaced by the
Jacobian of the state equations. The Jacobian matrix is not constant but can depend on
the state itself and time. To use the extended Kalman filter, you must specify both a state
transition function and the Jacobian of the state transition function.

Assume there is a closed-form expression for the predicted state as a function of the
previous state, controls, noise, and time.

Xk +1 = [k, ug, Wi, t)
The Jacobian of the predicted state with respect to the previous state is

0 _ of
FY = 2"

The Jacobian of the predicted state with respect to the noise is

Fw _ 0f
aw; *

These functions take simpler forms when the noise enters linearly into the state update
equation:



Extended Kalman Filters

Xk +1 = f(Xk, g, t) + wi

In this case, FW = 1,,.

Measurement Model

In the extended Kalman filter, the measurement can be a nonlinear function of the state
and the measurement noise.

2k = h(xk, Vi, 1)
The Jacobian of the measurement with respect to the state is

(0 _ oh
HY ==

The Jacobian of the measurement with respect to the measurement noise is

v) _ oh
HY =2

These functions take simpler forms when the noise enters linearly into the measurement
equation:

Zx = h(xg, ) + vg

In this case, HY = 1.

Extended Kalman Filter Loop

This is extended kalman filter loop is almost identical to the linear Kalman filter loop
except that:

* The exact nonlinear state update and measurement functions are used whenever
possible and the state transition matrix is replaced by the state Jacobian

* The measurement matrices are replaced by the appropriate Jacobians.
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Predict

Initialize Tpak = f(:er,-u.’“)

Y
Y

Lojos Pﬂlﬂ

Ze1)k = h(The)k)

> Ptk = FE)PMJ;FFJT + FOIQrt)T

Correct

Sk+1 = HéflPHukHii}f + H® R (HWT
Kis1 = PeyikHi 1S5

Thoi1kt1 = Thark + Kiar (2k41 — 2esape) €

Pesajks1 = Prgape — Kes1 Sk Kil

Ze 1+l = R(Thsajkr1)

Predefined Extended Kalman Filter Functions

Sensor Fusion and Tracking Toolbox provides predefined state update and measurement

functions to use in the extended Kalman filter.

Motion Model Function Name Function Purpose
Constant velocity constvel Constant-velocity state
update model
constveljac Constant-velocity state
update Jacobian
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Motion Model Function Name Function Purpose
cvmeas Constant-velocity
measurement model
cvmeasjac Constant-velocity
measurement Jacobian
Constant acceleration constacc Constant-acceleration state
update model
constaccjac Constant-acceleration state
update Jacobian
cameas Constant-acceleration
measurement model
cameasjac Constant-acceleration
measurement Jacobian
Constant turn rate constturn Constant turn-rate state

update model

constturnjac

Constant turn-rate state

update Jacobian
ctmeas Constant turn-rate

measurement model
ctmeasjac Constant-turnrate

measurement Jacobian
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Target Pose

Target pose consists of the position, velocity, orientation, and signature of a target. All
quantities are specified in the frame of a sensor platform. The target pose structure has

these fields:

Field

Description

PlatformID

Unique identifier for the platform, specified
as a scalar positive integer. This is a
required field with no default value.

ClassID

User-defined integer used to classify the
type of target, specified as a nonnegative
integer. Zero is reserved for unclassified
platform types and is the default value.

Position

Position of target in platform coordinates,
specified as a real-valued, 1-by-3 vector.
This is a required field with no default
value. Units are in meters.

Velocity

Velocity of target in platform coordinates,
specified as a real-valued, 1-by-3 vector.
Units are in meters per second. The default
is [0 0 0].

Acceleration

Acceleration of target in platform
coordinates specified as a 1-by-3 row
vector. Units are in meters per second-
squared. The defaultis [0 0 O].

Orientation

Orientation of the target with respect to
platform coordinates, specified as a scalar
quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from
the platform coordinate system to the
current target body coordinate system.
Units are dimensionless. The default is
quaternion(1,0,0,0).
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Target Pose

Field

Description

AngularVelocity

Angular velocity of target in platform
coordinates, specified as a real-valued, 1-
by-3 vector. The magnitude of the vector
defines the angular speed. The direction

defines the axis of clockwise rotation. Units

are in degrees per second. The default is
0 0].

[0
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Platform Pose

Platform pose consists of the position, velocity, orientation, and angular velocity of a
platform with respect to scenario coordinates. The returned structure has these fields:

Field

Description

PlatformID

Unique identifier for the platform, specified
as a scalar positive integer. This is a
required field with no default value.

ClassID

User-defined integer used to classify the
type of target, specified as a nonnegative
integer. Zero is reserved for unclassified
platform types and is the default value.

Position

Position of target in scenario coordinates,
specified as a real-valued 1-by-3 vector. This
is a required field with no default value.
Units are in meters.

Velocity

Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 vector.
Units are in meters per second. The default
valueis [0 O 0O].

Acceleration

Acceleration of the platform in scenario
coordinates, specified as a 1-by-3 row
vector in meters per second-squared. The
default value is [0 O O].

Orientation

Orientation of the platform with respect to
the local scenario NED coordinate frame,
specified as a scalar quaternion or a 3-by-3
rotation matrix. The format is specified by
the fmt input argument. Orientation
defines the frame rotation from the local
NED coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default value is
quaternion(1,0,0,0).
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Platform Pose

Field

Description

AngularVelocity

Angular velocity of the platform in scenario
coordinates, specified as a real-valued 1-
by-3 vector. The magnitude of the vector
defines the angular speed. The direction
defines the axis of clockwise rotation. Units
are in degrees per second. The default is
value [0 0 O].
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A profile contains the radar, IR, or sonar properties of a platform. The structure contains

these fields:

Field Description

PlatformID Scenario-defined platform identifier,
defined as a positive integer

ClassID User-defined platform classification
identifier, defined as a nonnegative integer

Signatures Platform signatures defined as a cell array

of radar cross-section (rcsSignature), IR
emission pattern (irSignature), and
sonar target strength (tsSignature)
objects.




Object Detections

Object Detections

Sensor detections are returned as a cell array of objectDetection objects. A detection
contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions

of nonlinear Kalman tracking filters

ObjectAttributes Additional information passed to tracker

Measurements and Measurement Noise

The sensor measures the coordinates of the target. The Measurement and
MeasurementNoise values are reported in the coordinate system specified by the
DetectionCoordinates property of the sensor.

When the DetectionCoordinates property is 'Scenario’, 'Body', or 'Sensor
rectangular’', the Measurement and MeasurementNoise values are reported in
rectangular coordinates. Velocities are only reported when the range rate property,
HasRangeRate, is true.

When the DetectionCoordinates property is 'Sensor spherical’, the
Measurement and MeasurementNoise values are reported in a spherical coordinate
system derived from the sensor rectangular coordinate system. Elevation and range rate
are only reported when HasElevation and HasRangeRate are true.

Measurements are ordered as [azimuth, elevation, range, range rate]. Reporting of
elevation and range rate depends on the corresponding HasElevation and
HasRangeRate property values. Angles are in degrees, range is in meters, and range rate
is in meters per second.
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Measurement Coordinates

DetectionCoordinates

Measurement and Measurement Noise

'Scenario'

'Body'

'Sensor rectangular'

Coordinates

Coordinate Dependence on
HasRangeRate

HasRangeRate Coordinates
true [X; y; Z; vX; vy; vz]
false [x; y; z]

'Sensor spherical'

Coordinate Dependence on
HasRangeRate and HasElevation

HasRangeRa |HasElevati |Coordinate

te on s

true true [az; el; rng;
]

true false [az; rng; rT]

false true [az; el; rng]

false false [az; rng]

Measurement Parameters

The MeasurementParameters field consists of an array of structures that describe a
sequence of coordinate transformations from a child frame to a parent frame or the
inverse transformations (see “Frame Rotation”). The longest possible sequence of
transformations is Sensor — Platform — Scenario. For example, if the detections are
reported in sensor spherical coordinates and HasINS is set to false, then the sequence
consists of one transformation from sensor to platform. If HasINS is true, the sequence
of transformations consists of two transformations - first to platform coordinates then to
scenario coordinates. Trivially, if the detections are reported in platform rectangular
coordinates and HasINS is set to false, the transformation consists only of the identity.

The structure fields are shown here. Not all fields have to be present in the structure. The
set of fields and their default values can depend on the type of sensor.

Field

Description




Object Detections

Frame

Enumerated type indicating the frame used
to report measurements. When detections
are reported using a rectangular coordinate
system, Frame is set to ' rectangular'.
When detections are reported in spherical
coordinates, Frame is set 'spherical’ for
the first struct.

OriginPosition

Position offset of the origin of the frame
relative to the parent frame, represented as
a 3-by-1 vector.

OriginVelocity

Velocity offset of the origin of the frame
relative to the parent frame, represented as
a 3-by-1 vector.

Orientation

3-by-3 real-valued orthonormal frame
rotation matrix.

IsParentToChild

A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate
frame. If false, Orientation performs a
frame rotation from the child coordinate
frame to the parent coordinate frame.

HasElevation

A logical scalar indicating if elevation is
included in the measurement. For
measurements reported in a rectangular
frame, and if HasElevation is false, the
measurements are reported assuming 0
degrees of elevation.

HasAzimuth

A logical scalar indication if azimuth is
included in the measurement.

HasRange

A logical scalar indication if range is
included in the measurement.
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HasVelocity A logical scalar indicating if the reported
detections include velocity measurements.
For measurements reported in the
rectangular frame, if HasVelocity is
false, the measurements are reported as
[x y z].IfHasVelocity is true,
measurements are reported as [X y z vX
vy vz].

Object Attributes

Object attributes contain additional information about a detection:

Attribute Description

TargetIndex Identifier of the platform, PlatformID,
that generated the detection. For false
alarms, this value is negative.

SNR

Detection signal-to-noise ratio in dB.




Signal Structure

Signal Structure

Emitted signals have this structure:

Field Description
PlatformID 1

EmitterIndex 1

OriginPosition real-valued 3-by-1 vector
OriginVelocity real-valued 3-by-1 vector
Orientation 1-by-1 quaternion
FieldOfView [15]

EIRP 100

RCS 0

CenterFrequency 300e6

Bandwidth 3eb6

WaveformType 0

ProcessingGain 0

PropagationRange 0
PropagationRangeRate 0

IsDirectPath 1
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INS is valid when the HasINS property is true.

Platform pose information from an inertial navigation system (INS) is a structure which

has these fields:

Field

Definition

Position

Position of the GPS receiver in the local
NED coordinate system specified as a real-
valued 1-by-3 vector. Units are in meters.

Velocity

Velocity of the GPS receiver in the local
NED coordinate system specified as a real-
valued 1-by-3 vector. Units are in meters
per second.

Orientation

Orientation of the INS with respect to the
local NED coordinate system specified as a
scalar quaternion or a 3-by-3 real-valued
orthonormal frame rotation matrix. Defines
the frame rotation from the local NED
coordinate system to the current INS body
coordinate system. This is also referred to
as a "parent to child" rotation.




Sensor Configuration

Sensor Configuration

Field Description

SensorIndex Unique sensor index

IsValidTime Valid detection time, returned as 0 or 1.
IsValidTime is © when detection updates
are requested at times that are between
update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of sensor determines which

objects fall within the sensor beam during
object execution. The field of view is
defined as a 2-by-1 vector of positive real
values, [azfov;elfov].

MeasurementParameters

MeasurementParameters is an array of
structures containing the coordinate frame
transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.
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Field Description

EmitterIndex Unique emitter index

IsValidTime Valid emission time, returned as 0 or 1.
IsValidTime is © when emitter updates
are requested at times that are between
update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the emitter has
completed a scan.

FieldOfView Field of view of emitter.

MeasurementParameters

MeasurementParameters is an array of
structures containing the coordinate frame
transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.




